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Abstract

This article analyses three characterization methods for spectral energy inputs to a linear time-invariant
system. Analytical frequency domain formulations are examined for discrete vibratory systems and one-
dimensional continuous structure (undergoing longitudinal or flexural motions) given a harmonic force
excitation. Two existing methods that have been proposed by prior researchers are first critically examined.
In particular, the driving point transfer functions and their derivatives with respect to frequency are
analyzed for an appropriate application to the energy characterization scheme and to determine the sources
of error. Then, a new (third) scheme is proposed that is more suitable over low and mid frequency regimes,
based on a proper interpretation of the driving point mobilities or impedances and their derivatives. The
new method is found to be insensitive to the driving point mobility or impedance formulations, unlike the
existing methods. It does yield consistent results, without requiring a prior knowledge of the transfer
functions. Finally, the role of structural loss factor has been clarified in the context of the stated problem.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Vibratory state of complex structures is sometimes described in terms of limited degrees of
freedom since the measurement at all internal and external points of a system, for instance, is
rather difficult if not impossible. The utilization of the driving point frequency response functions
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

A, B, C, D arbitrary constants
d damping matrix
E Young’s modulus
E energy
f force amplitude
F force amplitude vector
I area moment of inertia
IL insertion loss
j

ffiffiffiffiffiffiffi
�1
p

k stiffness matrix
k stiffness
L length
m mass
m inertia matrix
M mobility
M mobility matrix
q moment amplitude
Q arbitrary constant
S area
v velocity
V velocity vector
Z impedance matrix
z impedance
a correction factor
D difference between zero-crossing fre-

quencies
k wavenumber
f phase
x displacement
x, y, z cartesian coordinates
Z loss factor
r mass density
o frequency, rad/s

Subscripts

1, 2, 3, 4 characterization method
B flexural or bending motion
D driving point
d dissipated energy
i, j indices for elements
k potential energy
L axial or longitudinal motion
M energy estimation based on the mobility

formulation
m kinetic energy
x, y, z cartesian coordinates
Z energy estimation based on the impe-

dance formulation

Superscripts

T transpose
� complex valued
� complex conjugate
� time-averaged
^ estimate
0 real part
00 imaginary part

Operators

Re real part
Im imaginary part
P permutation
= o pseudo derivative with respect to

frequency
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alone is one extreme example of such approaches. Several vibratory energy (or power) analysis
methods have described vibro-acoustic measures only at the driving points [1–6]. Both
deterministic and statistical methods have been employed. Though these cover a broad range
of frequencies, most methods have been applied primarily to the higher frequency regime [6]. Such
methods [1–6] tend to focus on the dissipated power concepts although the determination of
kinetic and potential energy spectra may be more appropriate to describe the dynamic interactions
within the system, especially at the lower frequencies. Nevertheless, suitable methods that could
truly characterize spectral kinetic and potential energy inputs to a vibratory system are, in general,
not available. Recently, Pavic [7] examined the relationship between the global energy and
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damping within the dynamic systems but the applicability of this relationship would strongly
depend on the global damping values.
Our article attempts to develop a new spectral energy input characterization method with

applicability over the low and mid frequency regimes. This would be based on the knowledge of
driving point mobility or impedance. Earlier, Bobrovnitskii has proposed a method to
characterize the vibrational energy inputs to structures [8]. This method (designated in our
article as Method 1) attempted to identify the total time-averaged kinetic and potential energies
within structures by using the driving point transfer functions, force and velocity but without the
prior knowledge of the overall system matrix and/or the entire velocity field. However, the validity
of the proposed formulation was limited to undamped structures as it produced erroneous
predictions for damped structures. An alternate scheme (designated here as Method 2) was then
presented by Bobrovnitskii and Korotkov [9]. It improves the energy prediction by numerically
examining the error in energy estimates from Method 1. However, the use of Method 2 is still
limited to a lightly damped structure at low and mid-frequencies [9]. An appropriate method is
still not available for a heavily damped system and/or at higher frequencies that would correctly
predict the total time-averaged energies based on the driving point information alone.
In this article, we critically assess and extend the prior analyses that are designated as Methods

1 and 2 [8,9] and analytically investigate the energy characterization issues in both discrete and
continuous systems over low and mid frequency regimes. The scope is limited to a linear time-
invariant system and the analysis is performed only in the frequency domain given a single
harmonic force excitation. Specific objectives of our study include the following: (1) Examine the
existing methods [8,9] that characterize the spectral energy input to a discrete system using only
the driving point impedances or mobilities. (2) Analyze the driving point transfer function
expressions and their derivatives with respect to frequency for proper interpretation to determine
the sources of error. (3) Propose a new method (designated as Method 3 in this article) to estimate
the spectral energies via the driving point transfer functions. (4) Develop the energy estimates for
a clamped–free beam (in both longitudinal and flexural motions) and compare Methods 2 and 3,
and clarify the role of structural damping.
2. Existing methods

2.1. Method 1

The method first proposed by Bobrovnitskii [8] is briefly summarized here. If the overall
discrete system model including the sinusoidal velocity field and transfer functions are known,
total time-averaged energy input (E) is identified by using the following equations where the
ubiquitous harmonic term ejot is omitted for the sake of brevity:

1
2V
�T½Z=o�V ¼ 1

2V
�T½ðm� k=o2Þjþ d=o2�V ¼ ½ðĒm � ĒkÞjþ Ēd �, (1)

1
2V
�T½qZ=qo�V ¼ 1

2V
�T½ðmþ k=o2Þj� d=o2�V ¼ ½ðĒm þ ĒkÞj� Ēd �. (2)

Here, Ēm, Ēk and Ēd represent the time-averaged kinetic, potential and dissipation energies,
respectively. Further, Z, m, k and d are the impedance, inertia, stiffness and damping matrices of
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the complete system, respectively, and V is the velocity amplitude vector. Also, refer to the list of
symbols for the identification. By taking sum and difference of Eqs. (1) and (2), the Ēm and Ēk

terms are obtained as follows where Im represents the imaginary part of a complex quantity:

Ēm ¼ V�TIm½Z=oþ qZ=qo�V=4, (3)

Ēk ¼ �V
�TIm½Z=o� qZ=qo�V=4. (4)

Eqs. (3) and (4) require the system matrix and the velocity field of all elements. These hold for
both undamped and damped systems. However, note that similar expressions with the
corresponding mobility matrix (M) and force vector (F) in Eqs. (3) and (4) are not valid.
The corresponding energy formulation for a condensed version of Eqs. (3) and (4) is written as

follows, where the subscript D implies the driving point:

^̄E1Z;m ¼ V�TD Im½ZD=oþ qZD=qo�VD=4, (5)

^̄E1Z;k ¼ �V
�T
D Im½ZD=o� qZD=qo�VD=4. (6)

Here, the superscript ^ denotes the energy estimate and the subscript 1Z indicates an estimate that
is obtained by using Method 1 with impedance. Table 1 summarizes the subscripts that are used to
denote the energy estimates in our article.
Similar procedure can be formulated with the mobility expression as follows where subscript

1M implies an estimate based on Method 1 with mobility:

^̄E1M ;m ¼ F�TD Im½MD=oþ qMD=qo�FD=4, (7)

^̄E1M ;k ¼ �F
�T
D Im½MD=o� qMD=qo�FD=4. (8)

2.2. Method 2

In order to correct the improper occurrence of negative quantities from Method 1, Method 2
employs a correction factor a(o) to numerically compensate the error in ^̄E1 [9]. Then, Method 2
adopts the following modified expression for the sum of kinetic and potential energies where
subscript 2 indicates the estimate from Method 2 [9]:

½ ^̄E2Z;mðoÞ þ ^̄E2Z;kðoÞ� ¼ ½ ^̄E1Z;mðoÞ þ ^̄E1Z;kðoÞ�=aZðoÞ, (9)

½ ^̄E2M;mðoÞ þ ^̄E2M;kðoÞ� ¼ ½ ^̄E1M;mðoÞ þ ^̄E1M ;kðoÞ�=aMðoÞ. (10)
Table 1

Subscript symbols used to denote the energy estimates

Subscript Method number Subscript Formulation type Subscript Energy type

1 Method 1 [8]
Z Using impedance

m Kinetic

2 Method 2 [9] k Potential

3 Method 3 [new] M Using mobility d Dissipation
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Here, aZ and aM are calculated as follows where o1,i and o2,i are the first and second frequencies
of the ith pair of zero crossing points in Im½qZD=qo� and Im½qMD=qo� respectively:

aðoÞ ¼
Y

i

ðo� o0;iÞ
2
� ðDoiÞ

2

ðo� o0;iÞ
2
þ ðDoiÞ

2

" #
, (11)

o0;i ¼ ðo1;i þ o2;iÞ=2; Doi ¼ o2;i � o1;i=2. (12,13)

It appears that aZ and aM model anti-resonances of Im½qZD=qo� and Im½qMD=qo�, respectively,
by utilizing their zero-crossing points and to turn the negative values into positive ones and thus
reduce errors. Although some improvements are seen in the numerical prediction with Method 2,
the fundamental cause of the errors introduced by Methods 1 and 2 is still not well understood
[8,9]. Therefore, the characterization scheme needs be carefully analyzed to understand its salient
features and to seek possible improvements.
2.3. Comparative evaluation using a 3-dof example

The energy estimates with both impedance and mobility formulations are separately calculated
for a three degree-of-freedom (3-dof) system of Fig. 1 where a sinusoidal force f1 is applied to
mass 1. Results are shown in Fig. 2 for a nominal set of system parameters where the damping loss

factors are assumed as: Z1 ¼ Z12 ¼ Z23 ¼ Z3 ¼ Z. It is observed that the estimates ( ^̄E1;m þ
^̄E1;k)

with both impedance and mobility deviate from the exact energy spectra near resonances and anti-
resonances. Further, Fig. 2 shows that the errors between the predicted and the exact energies
increase as Z increases. Furthermore, the mobility and impedance formulations yield different
predictions, as compared in Fig. 2. It is also observed in Fig. 2 that Method 1 produces negative

values for ^̄E1;m þ
^̄E1;k which correspond to Im½qZD=qo� and Im½qMD=qo�. Note that the sum of

time-averaged kinetic and potential energies must be a positive quantity. Further note that
negative values are not displayed in such logarithmic plots (Fig. 2 and subsequent) and thus the
lines with the negative energy values are discontinuous at some frequencies.
m1 m2 

v1

f1

v2

m3 

v3

k3 (1 + η3 j)k23 (1 + η23 j)k12 (1 + η12 j)k1 (1 + η1 j)

Fig. 1. Three dof system used to evaluate the energy characterization methods.
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Fig. 2. Sum of time-averaged kinetic and potential energy estimates from Method 1 given a single sinusoidal force

excitation to the system of Fig. 1: (a) lightly damped system (Z ¼ 0:01); (b) heavily damped system (Z ¼ 0:2).
Key: , Exact; , estimate using impedance, , estimate using mobility.
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Similar to Method 1, the energy estimates with Method 2 are calculated and results are shown

in Fig. 3. It is observed in Fig. 3 that ^̄E2;m and ^̄E2;k are closer to the exact energies (Ēm and Ēk)

than the predictions from Method 1. However, ^̄E2;m and ^̄E2;k yet deviate from Ēm and Ēk, and the
deviations become more pronounced as Z increases, like Method 1. For example, the negative

values of ^̄E2;k, that should not appear with the correction factor, are still observed for a highly
damped system as shown in Fig. 3(d). This is because two resonances (around 200–300Hz) are
closely populated and the derivatives of impedance and mobility do not cross zeros at these
frequencies. Hence, the correction process of Method 2 does not function well at these

frequencies. Further, similar to Method 1, ^̄E2;m and ^̄E2;k via the mobility formulation differ from

the estimates based on the impedance expressions. Moreover, spurious peaks are observed in ^̄E2;m

and ^̄E2;k with both mobility and impedance formulations, as shown in Fig. 3. Further note that
the kinetic energy deviates from the exact one at very low frequencies, say up to 20Hz in this case.
3. Driving point transfer function and its derivative for a 2-dof model

3.1. Evaluation of Methods 1 and 2 using impedance formulation

In order to better understand the characterization schemes (5)–(8), a two degree-of-freedom
(2-dof) model of Fig. 4 with a single harmonic force excitation at mass 1 is examined here. The
equations of motion (in the frequency domain) are expressed as follows where v1 ¼ v1j jfv1

ejot,
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Fig. 3. Time-averaged energy estimates given a single sinusoidal force excitation to mass 1 of the system of Fig. 1: (a)

Kinetic energy of a lightly damped system (Z ¼ 0:01); (b) kinetic energy of a heavily damped system (Z ¼ 0:2);
(c) potential energy of a lightly damped system (Z ¼ 0:01); (d) potential energy of a heavily damped system (Z ¼ 0:2).
Key: , Exact; , Method 2 estimate using impedance, , Method 2 estimate using mobility.
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v2 ¼ v2j jfv2
ejot, f 1 ¼ f 1

�� ��ff 1
ejot and z is the impedance:

z11v1 þ z12v2 ¼ f 1, (14)

z21v1 þ z22v2 ¼ 0, (15)

z11 ¼ ½jðm1o� k1=oÞ þ k1Z1=o�; z12 ¼ �½�jk12=oþ k12Z12=o�, (16,17)
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k1 (1 + η1 j) k12 (1 + η12 j) k2 (1 + η2 j)
v2

Fig. 4. 2-dof model used to evaluate Methods 1 and 2.
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z21 ¼ �½�jk12=oþ k12Z12=o�, (18)

z22 ¼ ½jðm2o� k12=o� k2=oÞ þ k12Z12=oþ k2Z2=o�. (19)

Time-averaged kinetic, potential and dissipated energies of this system, respectively, are

Ēm ¼
1
2

m1 v1j j
2 þm2 v2j j

2
� �

, (20)

Ēk ¼
1

2

k1

o2
v1j j

2 þ
k12

o2
v1 � v2j j2 þ

k2

o2
v2j j

2

� �
, (21)

Ēd ¼
1

2

Z1k1

o2
v1j j

2 þ
Z12k12

o2
v1 � v2j j2 þ

Z2k2

o2
v2j j

2

� �
. (22)

Consider the driving point impedance (zD11). By using the relation v2 ¼ �ðz21=z22Þ�v1 from
Eq. (15), Eq. (14) is represented by zD11, force and velocity at 1 as follows:

z11 � z12
z21

z22

� �
v1 ¼ zD11v1 ¼ f 1. (23)

Now, the energy predictions of Eqs. (5) and (6) based on Method 1 are expressed as follows by
using the relationship z12=z22 ¼ z21=z22 ¼ �v2=v1:

v�1
qzD11

qo
v1 ¼ v�1

qz11

qo
þ

qz12

qo
v2

v1
þ

qz21

qo
v2

v1
þ

qz22

qo
v2

v1

� �2
" #

v1. (24)

On the other hand, the exact energy expression ½ðĒm þ ĒkÞj� Ēd � is obtained as follows by
substituting components of impedance matrix and velocity vector into the left-hand side of Eq. (2)
and by using v2 ¼ �ðz21=z22Þ�v1 since the energy description is valid with full impedance matrix
and complete velocity field:

V�T
qZ
qo

� �
V ¼ v�1

zD11

o
v1 ¼ v�1

qz11

qo
�
qz12

qo
z21

z22
�

qz21

qo
z�12
z�22
þ

qz22

qo
z�12
z�22

z21

z22

� �
v1. (25)

Here, the zD11= o is defined as the ‘‘pseudo derivative’’ of zD11 with respect to o. It is not
available but it is still required to predict the correct energy description. Similar to the exact
derivative, the ‘‘pseudo derivative’’ can be rewritten as

v�1
zD11

o
v1 ¼ v�1

qz11

qo
þ
qz12

qo
v2

v1
þ

qz21

qo
v2

v1

� ��
þ
qz22

qo
v2

v1

����
����
2

" #
v1. (26)
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Now, compare the exact derivative qzD11=qo of Eq. (24) with the ‘‘pseudo derivative’’ zD11= o of
Eq. (26). Observe that the difference between qzD11=qo and zD11= o arises because of the third
and fourth terms of each equation. In other words, differences arise due to the opposite phase of
impedance ratios z21=z22 and z�21

	
z�22. Note that z21=z22 and z12=z22 correspond to velocity

transmissibility (v2/v1) between the directly (v1) and indirectly (v2) excited dof. For an undamped
system, ðz12=z22Þ ¼ ðz

�
12

	
z�22Þ or ðv2=v1Þ ¼ ðv

�
2

	
v�1Þ and then qzD11=qo is equal to zD11= o. Further,

substituting the derivatives of z components (16)–(19) into Eqs. (24) and (26), respectively, yields
the following expressions:

v�1
qzD11

qo
v1 ¼ v�1

j m1 þm2
v2

v1

� �2

þ
k1

o2
þ

k12

o2

v1 � v2

v1

� �2

þ
k2

o2

v2

v1

� �2
" #

�
Z1k1

o2
�

Z1k12

o2

v1 � v2

v1

� �2

�
Z1k2

o2

v2

v1

� �2

8>>>><
>>>>:

9>>>>=
>>>>;

v1. (27)

v�1
zD11

o
v1 ¼ v�1

j m1 þm2
v2

v1

����
����
2

þ
k1

o2
þ

k12

o2

v1 � v2

v1

����
����
2

þ
k2

o2

v2

v1

����
����
2

" #

�
Z1k1

o2
�

Z1k12

o2

v1 � v2

v1

����
����
2

�
Z1k2

o2

v2

v1

����
����
2

8>>>><
>>>>:

9>>>>=
>>>>;

v1. (28)

Unlike Eq. (28) in the form of time-averaged energies, it is observed that the qzD11=qo of
Eq. (27) consists of some form of energy relationship with a phase difference (Df2�1 ¼ fv2

� fv1
)

between the driving point (v1) and internal (v2) dof. Multiply Eqs. (14) and (15), respectively,
by v�1 and v�2 and sum the resulting two equations to yield the following well-known energy
relationship:

v�1
zD11

o
v1 ¼ v�1

j m1 þm2
v2

v1

����
����
2

�
k1

o2
�

k12

o2

v1 � v2

v1

����
����
2

�
k2

o2

v2

v1

����
����
2

" #

þ
Z1k1

o2
þ

Z1k12

o2

v1 � v2

v1

����
����
2

þ
Z1k2

o2

v2

v1

����
����
2

8>>>><
>>>>:

9>>>>=
>>>>;

v1. (29)

Now, substitute Eqs. (27) and (29) into Eqs. (5) and (6) to yield the energy estimates from Method
1 as follows:

^̄E1Z;m ¼
1

2
m1 v1j j

2 þ
1

2
m2 v2j j

2 �
1

2

k12

o2
v1 � v2j j2 �

1

2

k2

o2
v2j j

2

� �

þ
1

4
Re m2 v2ð Þ

2
þ

k12

o2
v1 � v2ð Þ

2
þ

k2

o2
v2ð Þ

2

� �
expð�2jfv1

Þ


 �

�
1

4
Im

Z1k12

o2
v1 � v2ð Þ

2
þ
Z1k2

o2
v2ð Þ

2

� �
expð�2jfv1

Þ


 �
. ð30Þ
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^̄E1Z;k ¼
1

2

k1

o2
v1j j

2 þ
1

2

k12

o2
v1 � v2j j2 þ

1

2

k2

o2
v2j j

2 �
1

2
m2 v2j j

2

� �

þ
1

4
Re m2 v2ð Þ

2
þ

k12

o2
v1 � v2ð Þ

2
þ

k2

o2
v2ð Þ

2

� �
expð�2jfv1

Þ


 �

�
1

4
Im

Z1k12

o2
v1 � v2ð Þ

2
þ

Z1k2

o2
v2ð Þ

2

� �
expð�2jfv1

Þ


 �
. ð31Þ

Comparison of Eqs. (30) and (31) with Eqs. (20) and (21) shows that ^̄E1Z;m and ^̄E1Z;k deviate

from Ēm and Ēk, respectively. For example, ^̄E1Z;m consists not only of the kinetic energy but also

of the potential and dissipated energies, as shown in Eq. (30). Likewise, Eq. (31) shows that ^̄E1Z;k

contains other energies. For an undamped system, all elements are in the same phase and then
^̄E1Z;m of Eq. (30) and ^̄E1Z;k of Eq. (31) become equal to Ēm and Ēk, respectively. Therefore,
the energy prediction by Method 1 is valid only for an undamped (lossless) system and

it should yield erroneous results for a damped structure. It is observed that both ^̄E1Z;m and ^̄E1Z;k

may have negative values, unlike Ēm and Ēk, since the second and third terms of Eqs. (30) and
(31) may be negative. The difference between kinetic and potential energy components,
as shown in the first terms of Eqs. (30) and (31), may also be negative. These negative values,
which indicate an error in the estimates, are numerically converted into positive values via an
‘‘artificial’’ correction factor in Method 2 and thus some improvements in the estimates are found.
Although the error is numerically compensated for in Method 2, both Methods 1 and 2 are still
based on the same formulation and their inherent limitations still remain, as explained previously
in Section 2.
3.2. Evaluation of mobility formulation

Now, the mobility formulation is considered and an exact derivative expression similar to
Eq. (24) is

f �1
qMD11

qo
f 1 ¼ f �1

qZ�1D11

qo

� �
f 1 ¼ f �1 �MD11

qZD11

qo
MD11

� �
f 1. (32)

The left-hand side of Eq. (26) with the ‘‘pseudo’’ impedance that yields better estimates of Eqs. (5)
and (6) is now extended to mobility as follows:

v�1
ZD11

o
v1 ¼ f �1 M�

D11

ZD11

o
MD11

� �
f 1 ¼ f �1

MD11

o
f 1. (33)

Like the impedance case, the ð MD11Þ= o of Eq. (26) is defined here as the ‘‘pseudo derivative’’ of
mobility that produces the correct estimation along with the mobility formulation of Eqs. (7) and
(8). A comparison of Eq. (32) with Eq. (33) shows that the exact derivative ðqMD11Þ=qo differs
from ð MD11Þ= o and therefore the usage of ðqMD11Þ=qo with Eqs. (7) and (8) produces
erroneous estimations.
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4. General formulation for the derivatives of impedance or mobility

The aforementioned discussion can be generalized to a more than 2-dof system. The system
equations are rewritten as follows where subscripts 1 and 2 denote directly and indirectly excited
dof, respectively:

Z11V1 þ Z12V2 ¼ F1, (34)

Z21V1 þ Z22V2 ¼ 0. (35)

Like the 2-dof system case, the driving point impedance matrix is represented by sub-impedance
matrices:

½Z11 � Z12Z
�1
22 Z21�V1 ¼ ZD11V1 ¼ F1. (36)

The exact derivative of ZD11 with respect to frequency is

qZD11

qo
¼

qZ11

qo
�
qZ12

qo
Z�122 Z21 � ZT

21Z
�1T

22

qZ21

qo
þ ZT

21Z
�1T

22

qZ22

qo
Z�122 Z21. (37)

Similar to Eq. (25), the ‘‘pseudo derivative’’ of ZD11 with respect to o that correctly describes the
energy distribution is expressed as follows:

ZD11

o
¼

qZ11

qo
�
qZ12

qo
Z�122 Z21 � Z�T21Z

��1T

22

qZ21

qo
þ Z�

T

21Z
��1T

22

qZ22

qo
Z�122 Z21. (38)

Like Eqs. (27)–(29), detailed energies of qZD11=qo, ZD11= o and ZD11=o are described for a
single excitation case as follows where i is the dof index:

v�1
qzD11

qo
v1 ¼ v�1

j
P

i

mi
vi

v1

� �2

þ
1

2

X
i

X
j

kij

o2

vi � vj

v1

� �2

þ
X

i

ki

o2

vi

v1

� �2
" #

�
1

2

X
i

X
j

Zijkij

o2

vi � vj

v1

� �2

�
X

i

Ziki

o2

vi

v1

� �2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

v1, (39)

v�1
zD11

o
v1 ¼ v�1

j
P

i

mi

vi

v1

����
����
2

þ
1

2

X
i

X
j

kij

o2

vi � vj

v1

����
����
2

þ
X

i

ki

o2

vi

v1

����
����
2

" #

�
1

2

X
i

X
j

Zijkij
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vi � vj

v1

����
����
2

�
X

i

Ziki

o2

vi

v1

����
����
2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

v1, (40)

v�1
zD11

o
v1 ¼ v�1

j
P

i

mi
vi

v1

����
����
2

�
1

2

X
i

X
j

kij

o2

vi � vj

v1

����
����
2

�
X

i
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o2
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v1

����
����
2

" #

þ
1

2

X
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X
j

Zijkij
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vi � vj
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2

þ
X

i

Ziki

o2
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v1

����
����
2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

v1. (41)

By substituting Eqs. (39) and (31) into Eqs. (5) and (6), respectively, ^̄E1Z;m and ^̄E1Z;k can be
derived. These would produce errors, such as Eqs. (30) and (31). Similarly, the actual and
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‘‘pseudo’’ derivatives of mobility and detailed energies with mobility are expressed as follows and
substituting these into Eqs. (7) and (8) also would yield erroneous results as shown in Fig. 2:

qMD11

qo
¼ �MD11

qZD11

qo
MD11;

MD11

o
¼M�

T

D11

ZD11

o
MD11. (42a,b)

f �1
qMD11

qo
f 1 ¼ f 1

�� ��2
j
P

i

mi

vi

f 1

� �2

þ
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2

X
i

X
j

kij
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vi � vj

f 1

� �2

þ
X

i

ki
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f 1

� �2
" #

�
1

2

X
i

X
j

Zijkij
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f 1
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�
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i
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f 1

� �2

8>>>>><
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9>>>>>=
>>>>>;
, (43)

f �1
MD11

o
f 1 ¼ f

�� ��2
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þ
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i
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f 1
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����
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8>>>>><
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9>>>>>=
>>>>>;
. (44)
5. New spectral energy formulation (Method 3)

In order to better understand and properly utilize the frequency derivative of transfer functions,
consider Eq. (39) and note that qzD11=qo consists of an oscillating energy component with 2o
frequency rather than the time-averaged energy.
Instantaneous kinetic energies of a system are summed below where each element has the

velocity of viðt;oÞ ¼ Vi cosðotþ fvi
Þ:

Emðt;oÞ ¼
X

i

1

2
miv

2
i ¼

X
i

1

2
miV

2
i cos

2ðotþ fvi
Þ ¼ Ēmðt;oÞ þ ~Emðt;oÞ, (45)

Ēmðt;oÞ ¼
X

i

1

4
miV

2
i ; ~Emðt;oÞ ¼

X
i

1

4
miV

2
i cosð2otþ 2fvi

Þ, (46,47)

The instantaneous potential and dissipated energies can be expressed in a similar manner. Next,
the spectral energies of a system (at frequency o) are defined as follows where
v2i ¼ vij j

2 exp½jð2oþ 2fvi
Þ�:

~EmðoÞ ¼ ~Em

�� �� exp½jð2oþ f ~Em
Þ� ¼

1

2

X
i

miv
2
i , (48)

~EkðoÞ ¼ ~Ek

�� �� exp½jð2oþ f ~Ek
Þ� ¼ �

1

2

X
i

ki

o2
v2i þ

1

2

X
j

kij

o2
vi � vj

� 2" #
, (49)
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~EdðoÞ ¼ ~Ed

�� �� exp½jð2oþ f ~Ed
Þ� ¼ �

1

2

X
i

Ziki

o2
v2i þ

1

2

X
j

Zijkij

o2
vi � vj

� 2" #
. (50)

Here, ~Em, ~Ek and ~Ed are the complex-valued kinetic, potential and dissipated energy components,
respectively. Further, note that the negative sign is imposed on the right-hand side of Eqs. (49)
and (50) to preserve the potential and dissipated energy definitions, that is, kix

2
i ¼ �ðki=o2Þv2i and

Zikix
2
i ¼ �Ziðki=o2Þv2i .

Then, the qzD11=qo is rewritten as follows:

1

2

qzD11

qo
¼ j

~Em

v21
�
~Ek

v21

� �
þ
~Ed

v21
. (51)

Multiplying Eq. (51) by v21 yields the following:

1

2
v1
qzD11

qo
v1 ¼ j ~Em � ~Ek

� �
þ ~Ed . (52)

Like the energy relation (41) for zD11/o, the following expression is also valid and is
obtained by multiplying Eqs. (14) and (15) by v1 and v2, respectively, and summing the two
equations:

1

2
v1

zD11

o
v1 ¼ j ~Em þ ~Ek

� �
� ~Ed . (53)

Similar to procedure (3) and (4) for Ē, the following formulation predicts the spectral energies ~E
with the driving point impedance and its derivative:

~EZ;m ¼
1

4j
v1

zD11

o
þ

qzD11

qo

� �
v1, (54)

~EZ;k þ j ~EZ;d ¼
1

4j
v1

zD11

o
�

qzD11

qo

� �
v1. (55)

Assuming the damping loss factor is small (say Zo0:2), ~EZ;k is approximated as follows:

~EZ;k �
1

4j
v1

zD11

o
�

qzD11

qo

� �
v1 for ~EZ;k � ~EZ;d . (56)

Represent ~Em and Ēm as follows, where vi ¼ ReðviÞ þ ImðviÞ:

Ēm ¼
1

2

X
i

mi ReðviÞ½ �
2
þ ImðviÞ½ �

2
� �

, (57)

~Em ¼
1

2

X
i

mi ReðviÞ½ �
2
� ImðviÞ½ �

2
� �

þ j
X

2miReðviÞ � ImðviÞ½ �

" #
. (58)
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Further describe ~Em

�� �� as

~Em

�� �� ¼ 1

2

P
i

mi ReðviÞ½ �
2

� �2
þ

P
i

mi ImðviÞ½ �
2

� �2

�2
P

i

mi ReðviÞ½ �
2

� � P
i

mi ImðviÞ½ �
2

� �
þ 4

P
i

mi ReðviÞ � ImðviÞ½ �

� �2
2
66664

3
77775

1=2

. (59)

Then, Ēm may be approximated as

Ēm � ~Em

�� ��, (60)

when
X

i

mi ReðviÞ½ �
2

" # X
i

mi ImðviÞ½ �
2

" #
¼

X
i

mi ReðviÞ � ImðviÞ½ �

" #2
. (61)

An undamped system meets the condition of Eq. (61) since the imaginary part of vi does not exist
and both sides of Eq. (61) are equal to zero. Similar to Ēm, Ēk is approximated as follows where
only the first term on the right-hand side of Eq. (49) is expressed here for the sake of explanation:

Ēk � ~Ek

�� ��; when
X

i

ki

o2
ReðviÞ½ �

2

" # X
i

ki

o2
ImðviÞ½ �

2

" #
¼

X
i

ki

o2
ReðviÞ � ImðviÞ½ �

" #2
. (62,63)

The approximations given by Eqs. (60)–(63) are designated here as Method 3. The energy
estimates from Method 3 are therefore:

^̄E3Z;m ¼ ~EZ;m

�� ��; ^̄E3Z;k ¼ ~EZ;k

�� ��. (64,65)

Time-averaged dissipated energy can be calculated by using the well-known vibratory power flow
theory [3]. Time-averaged dissipated energy is

Ēd ¼
1

2o
Re vðoÞ � f �ðoÞ½ � ¼

1

2o
Re f ðoÞ � v�ðoÞ½ �

¼
1

2o
f ðoÞ
�� ��2Re M½ � ¼

1

2o
vðoÞ
�� ��2Re Z½ �. ð66Þ

The system of Fig. 1 is re-analyzed to examine Method 3 and the calculated results are shown in
Fig. 5. Observe that Method 3 predicts values that are closer to the exact energies. Unlike Method
2, Method 3 produces consistent predictions from impedance or mobility. The spurious peaks,
which result due to the numerical modeling process of Method 2, do not appear in the estimates of
Method 3. Furthermore, ^̄E3;m yields almost exact values, unlike Method 2, at lower frequencies.
However, the estimates of Method 3 show some deviations from exact energies near the second
and third resonances for a highly damped system, as observed in Fig. 5.
6. Spectral energies of one-dimensional continuous structure

Next, we apply Methods 2 and 3 to a one-dimensional continuous structure. A clamped–free
beam of Fig. 6 is considered to examine the energy measures and characterization methods.
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Fig. 5. Time-averaged energy estimates given a force excitation at mass 1 for the system of Fig. 1: (a) kinetic energy of a

lightly damped system (Z ¼ 0:01); (b) kinetic energy of a heavily damped system (Z ¼ 0:2); (c) potential energy of a

lightly damped system (Z ¼ 0:01); (d) potential energy of a heavily damped system (Z ¼ 0:2). Key: , Exact;

, Method 3 using impedance or mobility.

x

f0

(b)(a)

f0
y

x

Fig. 6. Clamped–free beam given a sinusoidal force excitation at the free edge (x ¼ 0): (a) under longitudinal excitation;

(b) under flexural excitation.
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Longitudinal and flexural motions are separately examined by applying a harmonic force (of
amplitude f0) to the free end (at x ¼ 0) in the corresponding directions, as shown in Fig. 6(a) and
6(b), respectively.

6.1. Longitudinal motions

Velocity amplitude (v) of the clamped–free beam given a harmonic force of amplitude f0 is
written as follows where r, S and L are the mass density, the section area and the length of the
beam, respectively:

vðx;oÞ ¼
f 0o

S ~EkL

expðj ~kLxÞ � expð�j ~kLxÞ½ �

expðj ~kLLÞ þ expð�j ~kLLÞ½ �
. (67)

Here, ~E and kL represent the complex modulus and the longitudinal wavenumber, respectively,
and are expressed as follow where superscripts 0 and 00 denote the real and imaginary parts,
respectively:

~EðoÞ ¼ E0ð1þ jZÞ ¼ E0 þ jE00; ~kL ¼ o
ffiffiffiffiffiffiffiffiffi
r
	
~E

q
¼ k0L þ jk00L � o

ffiffiffiffiffiffiffiffiffiffi
r=E0

q
ð1� jZ=2Þ
� �

. (68,69)

The squared-magnitude of velocity is

vðx;oÞ
�� ��2 ¼ vðxÞ � v�ðxÞ

¼
o2 f 0

�� ��2 expð�2k00LxÞ þ expð2k00LxÞ � expð2jk0LxÞ � expð�2jk0LxÞ
� �

S2 ~E
�� ��2 ~kLj j expðj ~kLLÞ þ expð�j ~kLLÞ

�� ��2 . ð70Þ

Time-averaged kinetic energy within the finite beam at frequency o is expressed as

Ēm ¼
rS

2

Z L

0

vðxÞ
�� ��2 dx

¼
f 0

�� ��2k0L expð2k00LxÞ � expð�2k00LxÞ
� �

þ jk00L expð2jk0LxÞ � expð�2jk0LxÞ
� �� �

4S ~E
�� �� expðj ~kLLÞ þ expð�j ~kLLÞ
�� ��2k00Lk0L . ð71Þ

The gradient of displacement (x) and the square of its amplitude are expressed below:

qxðxÞ
qx
¼
�jf 0

S ~E

expðj ~kLxÞ þ expð�j ~kLxÞ½ �

expðj ~kLLÞ þ expð�j ~kLLÞ½ �
, (72)

qxðxÞ
qx

����
����
2

¼
qxðxÞ
qx
�

qxðxÞ
qx

� ��

¼
f 0

�� ��2 expð�2k00LxÞ þ expð2k00LxÞ þ expð2jk0LxÞ þ expð�2jk0LxÞ
� �

S2 ~E
�� ��2 expðj ~kLLÞ þ expð�j ~kLLÞ

�� ��2 . ð73Þ
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Time-averaged potential and dissipated energies within the finite beam are derived as follows:

ĒkðoÞ ¼
SE0

2

Z 1
0

qxðxÞ
qx

����
����
2

dx

¼
E0 f 0

�� ��2 k0L expð2k00LxÞ � expð�2k00LxÞ
� �

� jk00L expð2jk0LxÞ � expð�2jk0LxÞ
� �� �

4S ~E
�� ��2 expðj ~kLLÞ þ expð�j ~kLLÞ

�� ��2k00Lk0L , ð74Þ

ĒdðoÞ ¼
SE00

2

Z 1
0

qxðxÞ
qx

����
����
2

dx

¼
E00 f 0

�� ��2 k0L expð2k00LxÞ � expð�2k00LxÞ
� �

� jk00L expð2jk0LxÞ � expð�2jk0LxÞ
� �� �

4S ~E
�� ��2 expðj ~kLLÞ þ expð�j ~kLLÞ

�� ��2k00Lk0L . ð75Þ

Finally, the Ēd expression can also be obtained from the vibration power formulation (66).

6.2. Flexural motions

Next, flexural motions of a clamped-free beam are considered and the flexural velocity field is

vðx;oÞ ¼
jof 0 A expðj ~kBxÞ þ B expð�j ~kBxÞ þ C expð ~kBxÞ þD expð� ~kBxÞ½ �

�2 ~EI ~k3B cosð ~kBLÞ coshð ~kBLÞ þ 1½ �
, (76)

A ¼ sinð ~kBLÞ þ sinhð ~kBLÞ½ � þ j cosð ~kBLÞ þ coshð ~kBLÞ½ �
� �

=2, (77)

B ¼ sinð ~kBLÞ þ sinhð ~kBLÞ½ � � j cosð ~kBLÞ þ coshð ~kBLÞ½ �
� �

=2, (78)

C ¼ � sinð ~kBLÞ þ sinhð ~kBLÞ½ � þ j cosð ~kBLÞ þ coshð ~kBLÞ½ �
� �

=2, (79)

D ¼ � sinð ~kBLÞ þ sinhð ~kBLÞ½ � � j cosð ~kBLÞ þ coshð ~kBLÞ½ �
� �

=2. (80)

Here, I is the area moment of inertia and the following ~kB represent the complex flexural
wavenumber where superscripts 0 and 00 denote the real and imaginary parts, respectively:

~kB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2rS

	
~EI

4
q

¼ k0B þ jk00B �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2rS=IE0

4
q

ð1� jZ=4Þ
� �

. (81)

After a lengthy manipulation, the square of velocity amplitude is derived as

vðx;oÞ
�� ��2 ¼ vðxÞ � vðxÞ� ¼ Q1

o2 f 0

�� ��2
4 ~E
�� ��2I2 ~kBj j

6 cosð ~kBLÞ coshð ~kBLÞ þ 1
�� ��2

" #
, (82)

Q1 ¼

Aj j2 expð�2k00BxÞ þ Bj j2 expð2k00BxÞ þ Cj j2 expð2k0BxÞ þ Dj j2 expð�2k0BxÞ

þ2 �Re

AB� expð2jk0BxÞ þ CD� expð2jk00BxÞ

þAC� exp½ðk0B � k00BÞð1þ jÞx� þ AD� exp½ðk0B þ k00BÞð�1þ jÞx�

þBC� exp½ðk0B þ k00BÞð1� jÞx� þ BD� exp½ð�k0B þ k00BÞð1þ jÞx�

2
64

3
75

2
66664

3
77775. (83)
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Time-averaged kinetic energy is obtained as follows by integrating |v(x)2| over the finite beam
span (x ¼ 0 to l):

ĒmðoÞ ¼
rS

2

Z L

0

vðxÞ
�� ��2 dx ¼ ½Q2 þQ3�

rSo2 f 0

�� ��2
8 ~E
�� ��2I2 ~kBj j

6 cosð ~kBLÞ coshð ~kBLÞ þ 1
�� ��2

" #
, (84)

Q2 ¼ � Aj j2 expð�2k00BLÞ � 1
� �	

ð2k00BÞ þ Bj j2 expð2k00BLÞ � 1
� �	

ð2k00BÞ

þ Cj j2 expð2k0BLÞ � 1
� �	

ð2k0BÞ � Dj j2 expð�2k0BLÞ � 1
� �	

ð2k0BÞ, ð85Þ

Q3 ¼ 2 �Re

AB� expð2jk0BLÞ � 1
� �	

ð2jk0BÞ þ CD� expð2jk00BLÞ � 1
� �	

ð2jk00BÞ

þAC� expððk0B � k00BÞð1þ jÞLÞ � 1
� �	

ððk0B � k00BÞð1þ jÞÞ

þAD� expððk0B þ k00BÞð�1þ jÞLÞ � 1
� �	

ððk0B þ k00BÞð�1þ jÞÞ

þBC� expððk0B þ k00BÞð1� jÞLÞ � 1
� �	

ððk0B þ k00BÞð1� jÞÞ

þBD� expðð�k0B þ k00BÞð1þ jÞLÞ � 1
� �	

ðð�k0B þ k00BÞð1þ jÞÞ

2
6666664

3
7777775
. (86)

Displacement and its second derivative with respect to the longitudinal coordinate (x) are

xðxÞ ¼
f 0 A expðj ~kBxÞ þ B expð�j ~kBxÞ þ C expð ~kBxÞ þD expð� ~kBxÞ½ �

�2 ~EI ~k3B cosð ~kBLÞ coshð ~kBLÞ þ 1½ �
, (87)

q2xðxÞ
qx2

¼
f 0 A expðj ~kBxÞ þ B expð�j ~kBxÞ � C expð ~kBxÞ �D expð� ~kBxÞ½ �

2 ~EI ~kB cosð ~kBLÞ coshð ~kBLÞ þ 1½ �
. (88)

The squared-magnitude of q2xðxÞ
	
qx2 is expressed as

q2xðxÞ
qx2

����
����
2

¼
q2xðxÞ
qx2

�
q2xðxÞ
qx2

� ��
¼ Q4

f 0

�� ��2
4 ~E
�� ��2I2 ~kBj j

2 cosð ~kBLÞ coshð ~kBLÞ þ 1
�� ��2

" #
, (89)

Q4 ¼

Aj j2 expð�2k00BxÞ þ Bj j2 expð2k00BxÞ þ Cj j2 expð2k0BxÞ þ Dj j2 expð�2k0BxÞ

þ2 �Re

AB� expð2jk0BxÞ þ CD� expð2jk00BxÞ

�AC� exp½ðk0B � k00BÞð1þ jÞx� � AD� exp½ðk0B þ k00BÞð�1þ jÞx�

�BC� exp½ðk0B þ k00BÞð1� jÞx� � BD� exp½ð�k0B þ k00BÞð1þ jÞx�

2
64

3
75

2
66664

3
77775. (90)

Similarly, time-averaged potential and dissipated energies are derived as follows by integrating
q2xðxÞ

	
qx2

�� �� over the beam span:

ĒkðoÞ ¼
E0I

2

Z 1
0

q2xðxÞ
qx2

����
����
2

dx ¼ ½Q2 þQ5�
E0 f 0

�� ��2
8 ~E
�� ��2I ~kBj j

2 cosð ~kBLÞ coshð ~kBLÞ þ 1
�� ��2

" #
, (91)

ĒdðoÞ ¼
E00I

2

Z 1
0

q2xðxÞ
qx2

����
����
2

dx ¼ ½Q2 þQ5�
E00 f 0

�� ��2
8 ~E
�� ��2I ~kBj j

2 cosð ~kBLÞ coshð ~kBLÞ þ 1
�� ��2

" #
, (92)
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Q5 ¼ 2 �Re

AB� expð2jk0BLÞ � 1
� �	

ð2jk0BÞ þ CD� expð2jk00BLÞ � 1
� �	

ð2jk00BÞ

�AC� expððk0B � k00BÞð1þ jÞLÞ � 1
� �	

ððk0B � k00BÞð1þ jÞÞ

�AD� expððk0B þ k00BÞð�1þ jÞLÞ � 1
� �	

ððk0B þ k00BÞð�1þ jÞÞ

�BC� expððk0B þ k00BÞð1� jÞLÞ � 1
� �	

ððk0B þ k00BÞð1� jÞÞ

�BD� expðð�k0B þ k00BÞð1þ jÞLÞ � 1
� �	

ðð�k0B þ k00BÞð1þ jÞÞ

2
6666664

3
7777775
. (93)

Like the longitudinal motion, the same result for Ēd can also be obtained by using Eq. (66).
7. Role of damping

Now, the time-averaged energies are calculated and the energy input measures are compared via
the ratios (D) of two alternate systems with high (Z2 ¼ 0:2) and low (Z2 ¼ 0:08) loss factors. Three
spectrally-varying insertion losses of time-averaged kinetic, potential and dissipated energies are
defined here as

DðĒm;oÞ ¼
Ēm with Z2
Ēm with Z1

; DðĒk;oÞ ¼
Ēk with Z2
Ēk with Z1

; DðĒd ;oÞ ¼
Ēd with Z2
Ēd with Z1

. (94296)

Results are shown in Fig. 7 where the same forces are applied to the system of Fig. 6 with Z1 and
Z2. Fig. 7 shows that DðĒmÞ approaches Z2/Z1 ratio at higher frequencies. However, it is observed
that DðĒdÞ converges to unity. Essentially, Ēd makes no distinction between two systems at higher
frequencies, unlike Ēm. This implies that the Ēd ratio with higher and lower damping systems
respectively remain the same at higher frequencies due to the following reasons: (1) Ēd can be
approximately represented as Ēd � Z � Ēk � Z � Ēm at high frequencies; (2) Ēm with a highly
damped system is lower than the one with a lightly damped system as expected; (3) Ēd with higher
Z and lower Ēm becomes equal to the one with lower Z and higher Ēm. Hence, the dissipated
0 50 100 150 200 250 300
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Fig. 7. Ratios of time-averaged energy for flexural motions of a clamped-free beam of Fig. 6(b) given a force excitation

at the free end. Here, Z2 ¼ 0:2 and Z1 ¼ 0:08. Key: , DðĒmÞ; , DðĒkÞ, , DðĒd Þ.
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energy may not exhibit much reduction by the application of high damping although the kinetic
energy input is significantly diminished at higher frequencies. Consequently, caution must be
exercised when choosing a vibrational energy input as a vibration transmission measure.
Conversely, Fig. 7 shows that DðĒmÞ is unity and DðĒdÞ displays the Z1/Z2 relationship (inverse of
the ratio of loss factors) at very low frequencies. This indicates that the introduction of high
damping would increase Ēd but Ēm would remain the same at lower frequencies. Further, DðĒmÞ

and DðĒkÞ are found to be very close each other at all frequencies. Finally, the DðĒkÞ=DðĒdÞ ratio
expression is give by Z2/Z1, as expected.
8. Comparison of Methods 2 and 3

Next, two energy characterization methods are again compared. The estimates for the sum of
time-averaged kinetic and potential energies from Method 3 are calculated for longitudinal
motions of Fig. 6(a) and are compared with the ones from Method 2 in Fig. 8. Like the discrete
system, both Methods 2 and 3 come very close to the exact kinetic and potential energies but the
deviations increase as damping and frequency increase. Further, Method 3 produces most
consistent predictions using both impedance and mobility formulations while Method 2 exhibits
results that are formulation sensitive. Furthermore, many spurious peaks are observed in Fig. 8
for the estimates from Method 2, like the discrete system case. Fig. 8(a), (c) also shows that
Ēm þ Ēk from Method 2 with impedance deviates more from around 450Hz and yields negative
values at the end of frequency band. This magnified deviation results from the odd number of zero
crossing points within the frequency band that Method 2 utilizes. Recall from the earlier
discussion, the numerical modeling and compensation procedure of Method 2 requires a pair of
the zero crossing points.
Calculated results for the flexural motions of the clamped–free beam of Fig. 6(b) are shown in

Fig. 9. Similar to the longitudinal motion case, both ^̄E2m þ
^̄E2k and ^̄E3m þ

^̄E3k estimate are close
to the exact values but the deviations between the estimates and the exact ones are again observed
as the frequency and damping increase. Like the previous case, Fig. 9 shows that ^̄E3m þ

^̄E3k

produces erroneous peaks and the mobility and impedance formulations yield different results.
Conversely, Method 3 estimates the same results from impedance and mobility, like the previous
example for longitudinal motions.
9. Conclusion

Three energy characterization methods have been critically examined in this article for discrete
and continuous systems over the low and mid frequency regimes. Methods 1 and 2, as proposed
by Bobrovnitskii and Korotkov [8,9], yield inconsistent estimates when mobility and/or
impedance formulations are compared. Their estimates deviate from the actual energy
inputs as the frequency and/or damping increases. Further, Method 2 requires additional
knowledge of the transfer functions and yet its energy estimate is sensitive to the numerical
correction factors. To overcome the deficiencies of Methods 1 and 2, we have proposed a new
formulation (Methods 3) for the spectral energy characterization that is based on a correct
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Fig. 8. Sum of time-averaged kinetic and potential energies for longitudinal motions of a clamped-free beam of

Fig. 6(a) given a force excitation at the free end:(a) lightly damped system (Z ¼ 0:08) with impedance; (b) lightly damped

system (Z ¼ 0:08) with mobility; (c) heavily damped system (Z ¼ 0:2) with impedance; (d) heavily damped system

(Z ¼ 0:2) with mobility. Key: , Exact; , Method 3, , Method 2.
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interpretation of the driving point mobilities or impedances. Method 3 is insensitive to the driving
point mobility or impedance formulations and yields consistent results, unlike the existing
methods (1 and 2). Further, our method does not require any prior knowledge of the transfer
functions, unlike Method 2. Nonetheless, Method 3 still shows some discrepancies near
resonances as the structural damping is increased. Therefore, further work is required to improve
our methodology especially over the high frequency regime and to develop the energy
characterization schemes when multiple phase-correlated sinusoidal force excitations are applied
to a vibratory system.
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Fig. 9. Sum of time-averaged kinetic and potential energies for flexural motions of a clamped–free beam of Fig. 6(b)
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